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Dynamic volume holography and optical information processing by Raman scattering

I.Y. Dodin and N.J. Fisch
Princeton Plasma Physics Laboratory, Princeton, NJ 08543

A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that
both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic
perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear
medium, information carried by a laser pulse can be captured in the form of a slowly-propagating low-
frequency wave that persists for a time large compared with the pulse duration. If such a hologram
is then probed with a short laser pulse, the information stored in the medium can be retrieved
in a second scattered electromagnetic wave. The recording and retrieving processes can conserve
robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information
stored in optical signals. While storing or reading the pulse structure, the optical information
can be processed as an analogue or digital signal, which allows simultaneous transformation of
three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the
phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of
transformation of the output pulses.

I. INTRODUCTION

Holographic methods of recording and retrieving wave
fields were first proposed about 50 years ago [1, 2]. Con-
ventional techniques of holography are based on record-
ing both the amplitude and the phase information of an
input light wave into static perturbations of the refrac-
tion coefficient of photoemulsion. The perturbations are
driven by the static beating of an input signal and a refer-
ence recording wave. After the pattern is imprinted into
photoemulsion, it can be retrieved by scanning the holo-
gram with another reference wave of the same frequency.
In such a static hologram, the information is “carved”
in static perturbations of the medium, so that only one
holographic image can be stored within a given sample.

Transient (dynamic) holograms [3–5] are produced by
information and reference waves of slightly different fre-
quencies, which store a holographic image in some low-
frequency electrostatic wave resonant with the beating
of the two electromagnetic signals. In strongly dissipa-
tive media, as the information wave field slowly changes
in time, the hologram transforms quasistatically and re-
produces the current interference pattern of the informa-
tion and the reference waves at each moment of time.
The invention of dynamic holography made high-speed
processing of optical information possible and was em-
ployed in applications such as “real-time” image process-
ing, optical computing, as well as optical mass storage
and wavefront reversal [6]. In recent years these applica-
tions have stimulated research on materials with dynamic
holographic capabilities which is useful for increasing the
degree of parallelism in manipulating optical data; mul-
tiplexing techniques which are also useful in increasing
storage capacity, have been devised [7].

Dynamic holography is applicable to dealing with rel-
atively fast signals, but nevertheless it has severe limi-
tations on information density in the information wave.
The quasistatic electromagnetic wave profile, which con-
tains the holographic image, needs to become settled in
order for optical information to be recorded with fidelity

(see, e.g., Ref. [8]). Thus, in principle, conventional dy-
namic holograms cannot resolve the longitudinal struc-
ture of the pulse.

To record the longitudinal structure of the informa-
tion pulse in a medium, there exist at least two different
opportunities. The first one, which was implemented in
the experiments with electromagnetically-induced trans-
parency (EIT) [9, 10], is to let the whole pulse into the
medium and then imprint its structure instantaneously
on the whole length of the pulse by means of a reference
signal coming from one side. In this case, substantial de-
celeration of the optical pulse is needed if the length of the
pulse in vacuum exceeds the length of a given sample of
the nonlinear medium (“a holographic plate”). Another
constraint consists of strong anisotropy of the hologram
providing that a reference signal imprints the image in-
stantaneously, so that the displacement of the informa-
tion pulse is negligible during the recording process.

An alternative approach of recording both transverse
and longitudinal structures of optical pulses in a non-
linear medium was proposed in our previous work [11].
We showed that both recording and retrieving can be
provided by probing the medium with short reference
pulses that scan the longitudinal profiles of the infor-
mation pulse and the hologram. Producing such static
volume holograms of such kind was discussed, for exam-
ple, in Ref. [12] with reference to a specific medium of a
coupled-resonator optical waveguide. (In Ref. [12], the
term “dynamic hologram” is used instead to emphasize
that the proposed technique deals with recording the lon-
gitudinal structure of a pulse.) Contrary to the technique
proposed for “stopping the light” in EIT experiments,
this method does not necessarily require that the linear
dispersion properties of the medium for the information
pulse must differ drastically from those with vacuum.

In this paper, we propose a technique which combines
the advantages of both conventional dynamic and volume
holography, and allows storing and processing of optical
information by recording and retrieving transient three-
dimensional (3D) holographic images in Raman media.
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The recording, storing and retrieving optical information
is by means of the third wave with finite frequency. Fur-
ther in this paper we term the proposed technique as
“dynamic volume holography”, or DVH. The image of
the original pulse imprinted onto the shape of the low-
frequency wave envelope is called then a dynamic holo-
gram of the pulse. We show that DVH can, in principle,
be realized in arbitrary Raman media (gases, fibers, plas-
mas), where beatings of high-frequency waves can res-
onantly excite low-frequency slowly-propagating waves,
such as, for example, sound or Langmuir waves, as long
as these waves persist on time scales suitable for storing
the optical information.

The paper is organized as follows. In Sec. II, we set up
the general problem and give the basic equations govern-
ing 1D nonlinear interaction of laser pulses during record-
ing and retrieving. In Sec. III, we discuss the features of
recording and retrieving longitudinal structure of optical
pulses in details. Sec. IV is devoted to the applicability
limits of the proposed approach. In Sec. V, we complete
the description of DVH by taking the transverse struc-
ture of the pulses into account and discuss the possibility
of multichannel DVH, which allows dealing with multi-
plexed 1D data buses without spatial separation of the
information channels. Further, in Sec. VI, we show that
DVH allows more advanced processing of optical informa-
tion, compared to the conventional dynamic holography.
Processing can include various linear conversions of ana-
logue data, such as, for example, taking the derivatives of
an optical pulse profile, or performing logical operations
on digital signals. The difficulties one faces while imple-
menting DVH in a nonideal Raman medium and possible
applications of the proposed technique are discussed in
Sec. VII. The summary of the main ideas is given in
Sec. VIII.

II. 1D PROBLEM: BASIC EQUATIONS

In order to get the main idea of DVH, we first discuss
the 1D problem of recording and retrieving longitudinal
profiles of optical pulses. To proceed, consider the 1D
interaction of information wave envelopes a and f and
a reference pulse b, having frequencies ωa, ωf , ωb and
wavenumbers ka, kf , kb correspondingly, which satisfy
the conditions of resonant interaction:

ωa = ωb + ωf , ka = kb + kf . (1)

Three-wave interaction equations can be put in the form
(see, e.g., Ref. [13])

∂ta + Va∂za = µabf, (2)
∂tb + Vb∂zb = −µbaf∗ (3)
∂tf + Vf∂zf = −µfab∗, (4)

where Va, Vb, Vf are the group velocities of the corre-
sponding waves. For further analysis, we require that
the constant coefficients µa and µf are of equal signs,

which we take positive for clarity. No limitations are im-
posed on the sign of µb, which is taken positive only to
match the notation of Refs. [11, 14, 15]. Consider the
change of variable z′ = z − Vbt, which we further term
shifting to the frame of reference moving together with
the pulse b. In the new frame, Eqs. (2-4) are given by

∂ta + (Va − Vb)∂z′a = µabf, (5)
∂tb = −µbaf∗, (6)
∂tf + (Vf − Vb)∂z′f = −µfab∗. (7)

Suppose now that the length σ of the pulse b is short
enough to provide that, in the moving frame, the evolu-
tion of a and f is adequately described by the quasistatic
approximation (see, e.g., Ref. [13]). Namely, we assume
that the temporal derivatives of a and f are small com-
pared to the terms containing spatial derivatives in Eqs.
(5), (7). In the moving frame, the temporal variations
of a and f are caused by two factors. The first one is
the variation in boundary conditions for the information
pulses:

a(z′ → ±∞) → a
(±)
0 (t), f(z′ → ±∞) → f

(±)
0 (t) (8)

(for b, zero boundary conditions are assumed), which do
not break the validity of the quasistatic approximation
if Λ � σ, where we denote the minimal characteristic
length of both pulses a and f with Λ. In addition, the
temporal variations of the information pulses are caused
by the evolution of the pulse b:

∂ta/a ∼ ∂tf/f ∼ ∂tb/b ∼ µbaf/b, (9)

so in order to neglect ∂t with respect to ∂z′ in Eqs. (5),
(7), one needs

b(Va,f − Vb)/σ � µbaf. (10)

Thus, in order for quasistatic approximation to hold, the
pulse b must be not only short compared to the pulses
a and f , but be also strong enough and propagate at a
speed sufficiently different from the group velocities of
the information pulses.

It is convenient to switch to dimensionless notation
by changing a → Caa, b → Cbb, f → Cff , introduce
dimensionless group velocities ua,b,f = Va,b,f/|Vb| and
variables ξ = z/Z0, τ = t/T0, and ζ = ξ − ubτ , where

Ca,f = Cb

√
µa,f

µb

Vb

Vb − Va,f
,

Z0 = C−1
b

√
(Vb − Va)(Vb − Vf )

µaµf
,

T0 = Z0/|Vb|, (11)

and Cb is arbitrary. (Therefore, the specific values of the
pulse amplitudes are not important in the sense that the
field dynamics for another amplitudes can be obtained
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FIG. 1: Conceptual scheme of recording of the longitudinal
structure of 1D optical pulse in Raman media. While scan-
ning with a reference pulse Brec, the longitudinal structure

of the optical pulse A
(0)
in is copied into the profile of electro-

static wave F0(ζf ) _ A
(0)
in (Υζf ) (called a dynamic volume

hologram). For counter-propagating optical pulses in bound-
less medium, the compression factor is Υ ≈ 2

by simple rescaling.) So, under the quasistatic approxi-
mation, Eqs. (5-7) take the dimensionless form [14]

∂ζa = bf, ∂τ b = −af∗, ∂ζf = −ab∗. (12)

¿From Eqs. (12), one can derive the Manley-Rowe re-
lation for the waves a and f : |a(ζ, τ)|2 + |f(ζ, τ)|2 =
|N0(τ)|2. Thus, if the phase θ of the wave envelope
b(ζ, τ) = B(ζ, τ)eiθ can be treated as constant, the wave
envelopes are given by [11, 13, 14]

a = N0 cos(U/2 + φ0),
f = −e−iθN0 sin(U/2 + φ0), (13)

where U(ζ, τ) = 2
∫ ζ

−∞ B(ζ′, τ)dζ′ satisfies the sin-
Gordon equation ∂2

ζτU = sin(U + 2φ0).

III. RECORDING AND RETRIEVING 1D
DYNAMIC VOLUME HOLOGRAMS

One-dimensional DVH of an optical wave envelope
ain(ξ, τ) = A

(0)
in (ζa = ξ − uaτ) recorded by a reference

laser pulse brec(ζ, τ) = Brec(ζ, τ)eiθrec represents a copy
of the longitudinal structure of the pulse A

(0)
in in a spatial

profile of low-frequency wave envelope f , which is pro-
duced by the beating of the two electromagnetic waves
(Fig. 1). Assume that dissipation of F0 is negligible on
the time scales of interest. At low power of the pulses,
when each of the two light waves may be treated as given
(the exact conditions will be discussed in Sec. IV), the
imprinted hologram is proportional to the convolution of

FIG. 2: Conceptual scheme of retrieving of 1D dynamic vol-
ume hologram from Raman media. While scanning with a
reference pulse Bret, the structure of the electrostatic wave
F0 is copied into the output pulse Aout(ζa) _ F0(Υ

−1ζa). For
counter-propagating optical pulses in boundless medium, the
stretching factor is Υ ≈ 2

the optical pulses:

f(ξ, τ) = F0(ζf = ξ − ufτ, τ),

F0(ζf ) = −
∫ +∞

−∞
A

(0)
in (ζf − (ua − uf )ζ′)

Brec(ζ′ − ζf/(ub − uf))dζ′, (14)

(F0(ζf ) = F0(ζf , τ → ∞)) as follows from Eq. (4).
Assuming Brec short compared to A

(0)
in , i.e. Brec(ζ) =

εrecδ(ζ), one gets

F0(ζf ) = −e−iθrecεrecA
(0)
in (Υζf ),

Υ =
ub − ua

ub − uf
. (15)

¿From Eqs. (15), one can see that the optical informa-
tion is copied into the low-frequency wave f , which has
the phase and the amplitude exactly the same than those
of the original optical pulse, though its shape is Υ-times
compressed along the axis of pulse propagation. For the
interaction of counter-propagating pulses, the compres-
sion factor is Υ ≈ 2, since ua ≈ −ub � uf .

It is important to emphasise that, contrary to the ex-
periments with EIT [9, 10], in DVH the compression fac-
tor varies depending on the velocity of the reference sig-
nal, though the nonlinear interaction itself may have no
influence on the dispersion properties of the information
pulse. For example, compression with Υ > 2 can be
achieved in a waveguide-type system, where the refer-
ence pulse velocity can be made small compared to the
group velocity of the information pulse by using differ-
ent waveguide modes for the two pulses. Recording with
ua > ub (where both are signed quantities) provides the
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inversion of the pulse longitudinal profile, i.e. the com-
pression factor Υ is negative in this case.

For Υ > 1, the original pulse length is larger than the
depth of the “holographic plate”. Thus, the front and the
tail parts of the pulse do not need to remain inside the
nonlinear medium at the same time while recording or
retrieving is being performed. Thus, high compression
of optical information within a hologram is achievable
without compressing the input pulse itself.

Suppose now that a second short reference pulse
bret(ζ) = Bret(ζ + ub∆)eiθret is injected into the medium
in order to scan the hologram (Fig. 2). Using Eq.
(2) and assuming constant reference pulse Bret and con-
stant low-frequency wave F0, the backscattered signal
aout(ξ, τ) = Aout(ξ − ua(τ − ∆)) is precisely the origi-
nal signal A

(0)
in attenuated and delayed by time ∆:

Aout(ζa) = −εrecεretA
(0)
in (ζa)eiθout ,

θout = θret − θrec. (16)

The results given by Eqs. (15-16) contain the major
idea of 1D linear DVH, namely the recording and the
retrieving optical pulse information by means of a low-
frequency slowly-propagating wave f . It remains to show
that the information can be recorded and retrieved with
fidelity under the condition of finite power of the refer-
ence pulses. Consider a recording process with εrec not
necessarily small compared to unit but with a reference
pulse still treated as given. The effective area where the
pulses a and f evolve due to the interaction with the ref-
erence pulse is limited by the length of Brec. For σ � Λ,
one can assume that the whole interaction region shrinks
to the point ξ ≈ ubτ . From Eqs. (13) applied to the area
close to the pulse Brec localized at ζ ∈ (−σ, +σ), σ → 0,
one gets the profiles of the information pulses:

a(ζ, τ) = A
(0)
in (−(ua − ub)τ) cos(U/2),

f(ζ, τ) = −A
(0)
in (−(ua − ub)τ) sin(U/2). (17)

After the interaction is over (τ → ∞), in the frames
moving together with the pulses a and f correspondingly,
the wave envelopes (17) are given by

Ain(ζa) = A
(0)
in (ζa) cos εrec,

F0(ζf ) = −e−iθrecA
(0)
in (Υζf ) sin εrec, (18)

where τ in the argument of A
(0)
in was replaced with ξ/ub

according to the adopted quasistatic approximation.
The linear approximation (15) is obtained from Eq.

(18) under the assumption of a weak reference pulse
(εrec � 1), which is generally true for conventional holog-
raphy, where the stored (and the retrieved) images are
proportional to the amplitudes of the reference waves
(with few exceptions – see Refs. [8, 16]). On the con-
trary, in DVH, as one can see from Eq. (18), an increase
of a reference pulse amplitude (εrec, εret & 1) does not
result in poor quality of pulse recording (and retrieving).

Though the information pulses may change significantly
during the interaction process, only their final amplitudes
(but not the shapes) depend on the amplitudes of the ref-
erence pulses.

The dynamics of the recording process for large εrec is
illustrated on Fig. 3 (retrieving goes similarly). Though
the profiles of the information pulses are distorted signif-
icantly during the interaction process, the shape of the
optical pulse is imprinted into the low-frequency wave
with fidelity if the length of the reference pulse is small
compared to the length of the information pulse (see also
Sec. IV).

The maximum amplitude of the recorded wave F0 is
achieved for εrec = π(n+1/2), where n is an integer. For
this type of reference pulse, recording results in complete
depletion of the input electromagnetic wave A

(0)
in , as fol-

lows from Eq. (18) (Fig. 4). This effect of depositing
the energy of an optical pulse in a certain location might
be useful for local heating of a nonlinear medium, since
the energy of the hologram eventually transforms into
the thermal energy of the medium, unless the hologram
is retrieved beforehand. On the contrary, pulses with
εrec = πn result in transient appearance of the hologram
F0, which disappears after the interaction is over (Fig.
5).

Pulse retrieving is similar to recording. In order to
retrieve the hologram stored in the wave envelope F0 by
a scanning pulse Bret (preserving its own shape during
the interaction), one can apply Eqs. (13) with N0(τ) =
F0(−(uf−ub)τ)eiθret and φ0 = −π/2. The retrieved wave
envelope and the remaining envelope of the low-frequency
wave at τ → ∞ are then given by

Aout(ζa) = eiθretF0(Υ−1ζa) sin εret,

F (ζf ) = F0(ζf ) cos εret. (19)

Expressing F0 in terms of the original signal A
(0)
in , one

gets a retrieved light pulse of the shape precisely equal
to the shape of the original signal:

Aout(ζa) = αA
(0)
in (ζa),

α = −eiθout sin εrec sin εret, (20)

from where the linear approximation (20) is obtained if
εrec, εret � 1.

Like the recording procedure, pulse retrieving pre-
serves the shape of the information pulse, providing an
output signal with the same profile, Υ-times-stretched
in space. In principle, this straightforward way of pulse
conversion on the “light acceleration” stage can be used
for constructing electromagnetic pulses of the required
shape. Assume one is able to design the hologram F0(ζf )
by some external means. Since the envelope F0 does not
propagate at high speed, the shape design for electro-
static oscillations might be easier to implement compared
to the construction of a relatively short light pulse shape,
while the light pulse is propagating. Further, by applying
the retrieving procedure, this artificially designed pulse
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FIG. 3: Recording of the longitudinal structure of a 1D two-
hump optical pulse a by a counter-propagating reference pulse
b into the profile of electrostatic wave amplitude f (dashed);
Vf = 0, εrec = 1.3π, arbitrary units

FIG. 4: Raman interaction between an optical pulse a and a
counter-propagating reference pulse b with εrec = π/2 (arbi-
trary units). Electromagnetic pulse a is almost fully depleted
after the interaction; the electrostatic wave has a maximum
possible amplitude

is accelerated up to the speed of light having the required
spatial profile F0(Υ−1ζa), which might be useful for vari-
ous applications where the laser pulse structure is critical.

As follows from Eqs. (19-20), the largest amplitude of
the output signal Aout is achieved with reference pulses
having εret = π(n + 1/2), where n is an integer. In this
case, the hologram F is “erased” during retrieving. Thus,
reference pulses with εret = π(n+1/2) essentially cool the
medium by extracting the energy of electrostatic oscilla-
tions, which is converted into the energy of electromag-
netic waves propagating away from the medium at the
speed of light.
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FIG. 5: Raman interaction between an optical pulse a and
a counter-propagating reference pulse b with εrec = π (ar-
bitrary units). No electrostatic wave f (dashed) eventually
survives after the interaction is over; optical pulse a changes
its polarity

IV. CONDITIONS OF RECORDING AND
RETRIEVING OPTICAL INFORMATION WITH

FIDELITY

To ensure that optical information can be recorded
and retrieved with fidelity according to Eqs. (18-19),
a certain number of conditions need to be satisfied. The
first (geometric) requirement of a narrow reference pulse
(σ � Λ) provides that the image is “painted with a fine
(small-scale) brush”, so that high spatial resolution of
the hologram can be achieved. With a “coarse brush”,
small-scale details of the optical pulse are averaged out
while being printed into the medium, so that only part
of the information carried by the pulse is copied into the
hologram. The same applies to the retrieving process,
where fine details of the hologram can not be retrieved
with fidelity by means of a reference pulse, if its length
exceeds the minimal longitudinal scale of the hologram.

In addition to the geometric constraint of narrow ref-
erence pulses, let us determine the limitations on pulses’
amplitudes providing that the reference pulses can be
treated as given during the interaction, as assumed in
derivation of Eqs. (18- 20). The interaction between the
optical pulse A

(0)
in and the hologram F0 being recorded

provides a reference pulse with a tail δB with duration
of the order of Λ:

δB ∼ εaF ∗
0 ,

εa =
∫

|A(0)
in (ζa)|dζa ∼ A

(0)
in Λ. (21)

(For clarity, in this section we take ua ∼ ub and sup-
pose Λ to be the length of both optical and electrostatic
information waves, i.e. Υ ∼ 1 is assumed.) The inter-
action between δB and A

(0)
in results in hologram distor-

tion δF ∼ εaδB∗. Therefore, the information can be
recorded with fidelity (δF/F0 � 1) only by weak infor-
mation pulses:

ε2a � 1. (22)

In compliance with the assumptions made above, the
strength of the reference pulse does not enter the con-
dition of adequate recording.

In the presence of a finite-amplitude resonant elec-
trostatic noise Fn � F0, additional conditions must be
taken into account to ensure the information is recorded
with fidelity. While interacting with a reference pulse
(Fig. 6), the noise Fn generates a distortion of the input
signal (δA)(1)n ∼ εrecFn, εrec = min{εrec, 1}, which is im-
mediately imprinted into the profile of the electrostatic
wave F . This mechanism provides a relative distortion

(δF )(1)n /F0 ∼ εrecεn0/εa, (23)
εn0 = εnΛ/Λn,

εn =
∫

|Fn(z)|dz ∼ FnΛn
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FIG. 6: Recording an optical pulse a a into a noisy Raman
medium by a counter-propagating reference pulse b (arbitrary
units). Thermal oscillations fn existing in the Raman medium
are added to the desired profile of the electrostatic wave f
(dashed)

(εrec 6= πn is assumed), where Λn & Λ is the full path of
a laser pulse inside the noisy medium. The other mech-
anism, through which (δA)(1)n can influence the quality
of recording is the distortion of the reference pulse pro-
vided by the interaction between (δA)(1)n and Fn. Since
(δB)(1)n ∼ εn(δA)(1)n , one gets for the corresponding de-
formation of the hologram F0:

(δF )(2)n /F0 ∼ εnεn0. (24)

In addition to this, the noise Fn is also responsible for the
direct distortion of the reference pulse (δB)(2)n ∼ εaFn.
While interacting with A

(0)
in , (δB)(2)n alters the electro-

static wave profile providing a distortion

(δF )(3)n /F0 ∼ εaεn0/εrec. (25)

Finally, the last mechanism of recording quality loss
caused by the presence of (δB)(2)n results from the evolu-
tion of the input signal: (δA)(2)n ∼ εn(δB)(2)n , which, in
turn, results in electrostatic wave profile distortion

(δF )(4)n /F0 ∼ εnεn0. (26)

Neglecting higher-order corrections on Fn, one can esti-
mate the total distortion of the recorded profile produced
by the noise as

(δF )n/F0 = O(εrecεn0/εa) + O(εnεn0) +
O(εaεn0/εrec), (27)

from where it is seen that in noisy medium εrec ∼ εa

allows the best achievable quality of the hologram. For
recording in the regime of εrec ∼ 1, which is useful for
nonlinear information processing (see Sec. VI), one can
summarize the validity conditions for quality recording
as

εn0 � εa � 1, εnεn0 � 1. (28)

The condition for retrieving information with fidelity,
analogous to Eq. (22), can be obtained similarly and
requires that the integral amplitude of the hologram is
small:

ε2f � 1,

εf =
∫

|F0(ζf )|dζf ∼ F0Λ. (29)

Thus, retrieving of the hologram, which was recorded in
conformity with the condition (22), is always adequate,
since εf . εa.

Taking the noise Fn into account, one is faced with the
problem of generating optical signal (δA)(1)n in addition
to Aout (Fig. 7):

(δA)(1)n /Aout ∼ εn0/εf . (30)

On the other hand, the same distortion of the out-
put pulse produces the distortion of the reference pulse
(δB)n ∼ εn(δA)n, which, in turn, results in the output
signal distortion:

(δA)(2)n /Aout ∼ εnεn0. (31)

The higher corrections are of the order of ε2nεn0/εf , so
that one needs to have ε2n � 1 for them to remain small.
Then the total distortion of the output signal by the noise
Fn is given by

(δA)n/Aout = O(εn0/εf) + O(ε2n), (32)
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FIG. 7: Retrieving information from an electrostatic wave
f (dashed): an optical pulse a is generated as a result of
interaction between the electrostatic wave f (dashed) existing
in a noisy medium and a counter-propagating reference pulse b
(arbitrary units). The profile of thermal oscillations of spatial
scale not less than the lenght of the recording pulse is copied
into the output pulse; smaller-scale fluctuations are averaged
out during the retrieving process and thus are not reproduced
in the output pulse shape

which requires that εrec should not be too small, since
εf ∼ εrecεa. Finally, the summarized conditions for qual-
ity retrieving can be put in the form

εn0 � εf � 1, ε2n � 1. (33)

It is worth noting that during retrieving electrostatic
fluctuations of spatial scale less than the length of the
recording pulse are averaged out and thus are not repro-
duced in the output pulse shape (Fig. 7) because of finite
resolution of the retrieving procedure.

V. 3D DYNAMIC VOLUME HOLOGRAMS.
MULTIPLEXING

Until this point, we considered recording and retriev-
ing a 1D dynamic volume hologram. The 1D DVH rep-
resents a snapshot of the longitudinal structure of an
optical pulse imprinted into some low-frequency slowly-
propagating wave. However, a similar technique is ap-
plicable for recording and retrieving also the transverse
structure of 3D pulses.

First, consider the case when the width of the medium
is small compared to the diffraction (Raleigh) length of
optical pulses zR ∼ kR2, where R is their minimal char-
acteristic transverse scale, so that the geometrical optics
approximation can be applied. For paraxial propagation
of the information and the reference optical pulses, a 1D
hologram is formed on each geometrical ray of the infor-
mation pulse. In this case, the transverse field distribu-
tion of the input signal enters the solution for the stored
and retrieved signal only parametrically:

F0(ζf , r⊥) = −A
(0)
in (Υζf , r⊥)e−iθrec sin εrec,

Aout(ζa, r⊥) = αA
(0)
in (ζa, r⊥). (34)

If the reference pulses are also nonuniform in the trans-
verse direction, then εrec, εret, θrec, θret, and α are func-
tions of r⊥. By varying the amplitude and the phase
distribution of the reference pulses, one can perform var-
ious operations on the structure of the information pulse
while recording and retrieving the hologram (see Sec. VI).

Any modification of the information pulse structure
can obviously include modification of the pulse wave front
by adjusting the wave fronts of the reference pulses. For
example, suppose that either the recording or retrieval
pulses have transverse phase variation, such as focusing
or defocusing wave fronts. The transverse phase advances
can then be captured either in the plasma wave or in
the retrieval process. The result is that the original data
pulse upon retrieval can be brought to focus or magnified.
Similarly, by varying the angle between the velocities of
the information and the reference pulses (which corre-
sponds to a reference pulse linear phase dependence on
a transverse coordinate), one can change the direction of
the output pulse propagation, for example, to make it en-
ter a certain channel of an optical information processing
system where the reference signal came out from.

In the opposite limit of strongly diffracting pulses,
recording and retrieving of the transverse structure
of pulses are also possible. For example, consider a
waveguide-type electrodynamic system channeling the
pulses while they are interacting with each other. In
a multi-mode waveguide, the information light pulse de-
cays on a finite number of vector eigenwaves, each ca-
pable of carrying optical information in its longitudinal
profile independently. As shown below, under certain as-
sumptions, such optical information can also be extracted
separately from different modes to be recorded into a set
of uncoupled 1D holograms. Later these holograms can
be retrieved back into the form of an optical signal on
demand.

Consider the information wave envelope a and the field
of a reference optical pulse b given in a form of series of
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the normalized vector eigenwaves ψn of the waveguide:

a = R
∑

n

an(z, t)ψn(r⊥)eih(a)
n z ,

b = R
∑
m

bm(z, t)ψn(r⊥)eih(b)
m z,

〈ψm|ψn〉 = δmn, (35)

where R is the radius of the waveguide, which we include
as a normalization factor to equalize the dimensions of
a, b and an, bm; h

(a,b)
n,m are the longitudinal wavenumbers

of the corresponding waveguide modes; scalar product
denoted with angular brackets stand for integrating over
the waveguide cross-section. The equations governing the
evolution of the individual mode amplitudes an, bm can
be put in the form [15]

∂tan + V (a)
n ∂zan = µa

∑
m

bmfnm,

∂tbm + V (b)
m ∂zbm = −µb

∑
n

anf∗
nm, (36)

where V
(a,b)
n,m are the group velocities of the corresponding

modes. The quantities

fnm = 〈ψn|ϕ|ψm〉e−i(ωa−ωb)t+i(h(b)
m −h(a)

n )z (37)

represent the transverse moments of the full electrostatic
wave potential ϕ. Assuming that the interaction is effi-
cient for resonant waves only, one can put the equation
for fnm in the form

∂tfnm + V (f)
nm ∂zfnm = −µfCnmanb∗m,

Cnm = R2

∫
d2r⊥|ψ†

nψm|2, (38)

where V
(f)
nm is the group velocity of the electrostatic wave

corresponding to the carrier frequency ωa − ωb and the
wavenumber h

(a)
n − h

(b)
m ; dimensionless coefficients Cnm

represent form-factors of the order of unit. For single-
mode reference pulse, bm = δmsbs, which does not evolve
during three-wave interaction (for details, see Sec. IV),
the equations for the modes of the information optical
pulse an and the “modes” of the plasma wave fns split
up into separate couples of equations

∂tan + V (a)
n ∂zan = µabsfns,

∂tfns + V (f)
ns ∂zfns = −µfCnsanb∗s, (39)

with each couple (39) representing a 1D scalar problem
equivalent to the one described by Eqs. (2), (4).

Eqs. (39) prove that each mode of the information op-
tical pulse can exchange information with the only res-
onant harmonic of low-frequency wave and can not mix
with other waveguide modes even while being scanned by
a reference pulse. Due to this, multiplex data storing and
retrieving inside a waveguide becomes possible. That is,

a waveguide can be used as a multiplex data bus storing
optical information within spatially overlapped but still
independent information channels.

To get higher level of multiplexing, one can use differ-
ent carrier frequencies of optical signals, which is termed
color holography (see, e.g., Refs. [17, 18]). As long as
the frequency gap between the individual channels re-
mains large compared to the inverse characteristic tem-
poral scales of information pulses evolution, the fre-
quency channels do not mix with each other. Thus, more
independent holograms can be stored at the same loca-
tion within a Raman medium.

VI. INFORMATION PROCESSING BY DVH

Dynamic holography allows not only storing and read-
ing optical information from a nonlinear medium, but
also processing optical information in a number of ways
while recording and retrieving light pulses (see, e.g., Refs.
[6–8]). In addition to those, higher flexibility of DVH
allows more advanced processing of optical signals. To
show this, consider first the simplest case of 1D pulse
recording at low intensities (processing during retriev-
ing is analogous). Assume, for example, nonzero ref-
erence pulse to have a small average εrec. In the first-
order approximation on σ/Λ, the pulse shape can then
be treated as proportional to the first derivative of the
delta-function, Brec(τ) = ε̃recδ

′(τ), if ε̃rec � εrecΛ. Us-
ing Eq. (14), one gets for the recorded pulse after the
interaction is over (τ → ∞):

F0(ζf ) = (uf − ua)ε̃rec(A
(0)
in (Υζf ))′, (40)

where the derivative applies to the whole argument of
A

(0)
in . The hologram then contains a snapshot not of the

actual pulse shape but of its first derivative (Fig. 8).
Analogously, higher derivatives and the results of other
linear conversions applied to the original signal profile
can be imprinted into the low-frequency envelope struc-
ture by further varying the shape of the reference pulse.
Thus, analogue optical information can be processed in
various ways by means of linear DVH, which might be
useful in applications of analogue computing technology.

In addition to this, conventional Boolean operations
can be performed on digital optical data. Consider 1D
information pulse as 1D array of data bits, and the ampli-
tude of the reference pulse as a single bit of information.
At low power, the recording (or the retrieving) procedure
provides multiplication of both signals, i.e. applies ‘logi-
cal and’ (∧) to the pair of pulses: F0 = A

(0)
in ∧Brec. (Ap-

plying the same technique to 3D pulses, one can perform
logical operations on 3D arrays simultaneously, which
represents an additional advantage of DVH in compar-
ison with the conventional dynamic holography, where
only 2D arrays can be processed at the same time [7, 8]).

‘Logical not’ (¬) for optical pulses is also possible with
nonlinear DVH, despite it represents a significant chal-
lenge for linear holography [7], where the amplitudes of
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FIG. 8: Recording 1D pulse shape derivative: 1D two-hump
optical pulse a is differentiated by a counter-propagating ref-
erence pulse b and the result is recorded into the profile of
electrostatic wave amplitude f (dashed); Vf = 0, arbitrary
units

the recorded and the retrieved signals are proportional
to the amplitudes of the reference pulses. This operation
can be performed by recording an identical unit into the
hologram and scanning it with a data bit stored in the
reference pulse with εrec = π/2 (binary unit) or εret = 0
(binary zero). What is left in the hologram is the “nega-
tive” of the information bit, i.e. F = ¬Brec. ‘Logical or’
(∨) can be performed similarly by retrieving the identi-
cal unit with two consequent scanning pulses B

(1,2)
ret , both

having εrec = π/2 or εret = 0. In case when at least one
of the two scanning pulses contains binary unit, the holo-
gram will be erased, so that the remaining hologram bit
contains ‘negative logical or’ applied to the pair of bits
contained in the reference pulses: F = ¬(B(1)

ret ∨ B
(2)
ret ).

In order to inverse the result, ‘logical not’ need to be
applied. Other Boolean operations can be performed in
similar ways.

The number of possible linear conversions, which can
be performed on shapes of the optical pulses, can be in-
creased further by taking advantage of 3D holography.
By storing optical information in both longitudinal and
transverse profiles of the wave envelopes, one can perform
digital operations with three- dimensional arrays of data
or analogous operations with 3D continuous functions.

VII. DVH IN NONIDEAL MEDIA

Within the approximation of the non-decaying low-
frequency wave containing the holographic image, in-
creasing the pulse storing time ∆ does not result in loss of
information. For practical implementations, however, it
is necessary to find out how nonideal effects, which were
not taken into consideration in the proposed model, may
distort the hologram. Four basic ones can be identified:
collisional and resonant damping of the low-frequency
wave, background thermal fluctuations and transverse
inhomogeneity of the Raman medium resulting in the
wave front distortion of retrieved pulses. In this section,
we will discuss these effects in application to a number
of regimes of DVH in a cold plasma.

In plasmas, DVH can most easily be implemented on
the base of laser pulses Raman backscattering on low-
frequency Langmuir (plasma) waves with dispersion re-
lation approximately given by ω2

f = ω2
p [11]. In the

cold plasma limit, namely at kfλD � 1, where λD =√
Te/4πnee2 is the Debye length (here Te and ne are

the electron temperature and density; e is the charge of
electron), the group velocity of plasma waves are negli-
gible. For now, let us also assume ω ≡ ωa ≈ ωb � ωp, so
that the refraction coefficient for electromagnetic waves
n = 1−ω2

p/ω2 equals unit, and the dispersion relation for
laser pulses is ω2(k) ≈ k2c2, and k ≡ ka ≈ −kb ≈ kf/2.

Assuming weak collisional and resonant (Landau)
damping of a plasma wave, one gets ν = νC + νL for
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the resulting decay rate of the latter, where

νC =
4πnee

4ΛC

m
1/2
e T

3/2
e

, and

νL =
1
2

√
π

2
ωp

(kfλD)3
exp

(
− 1

2(kfλD)2

)
, (41)

are the partial decay rates corresponding to the two pro-
cesses [19], where ΛC ∼ 10 is the Coulomb logarithm.
We assume the ion charge Z = 1 to provide the lowest
possible decay. One can see that the requirements of low
collision and Landau damping rates contradict one an-
other. As the electron temperature grows, the collision
rate decreases but Landau damping grows. From this
point, choosing the optimal regime is a compromise, and
for given electron density and laser wavelength λ = 2π/k,
there always exists a upper limit for the time of pulse
storing.

It is of interest to find the maximum storing time
∆max = ν−1 measured in durations of the informa-
tion pulse τin = Ninτref , where Nin = Λ/σ � 1, and
τref = σ/c is the duration of each reference pulse:

∆max

τin
=

1
NinNref

(ωp

ν

)
. (42)

Here Nref = ωpτref must be large compared to unit for
the condition of resonant three-wave interaction to hold
during recording and retrieving. For fixed Nin, Nref and
given

ND ≡ neλ
3 = π

λ

re

(ωp

ω

)2

, λ = 2π/k,

re = e2/mec
2 ≈ 2.82 × 10−9 µm, (43)

the optimal value of Nf = (kfλD

√
2)−1 can be found as

the one, which minimizes the ratio

ν

ωp
= 32

√
2π2ΛC

N3
f

ND
+ N3

f

√
π exp(−N2

f ), (44)

as follows from Eq. (41). Thus, the optimal conditions
correspond to ND = AN−2

f exp(N2
f ), A ≈ 48

√
2π3/2ΛC.

Finally, the maximum possible delay limited by both col-
lisional and collisionless damping is given by

∆max

τin
≈ 3

2A
√

π
× ND

N3
f NinNref

, (45)

Nf =
√

ln(ND/A) + ln ln(ND/A), (46)

and the optimum temperature is equal to

Topt ≈ mec
2

8N2
f

(ωp

ω

)2

. (47)

One might think that information can be stored with
fidelity for times as large as desired by increasing ND.
However, in the proposed approach, ND is limited by

the following factors. First, (ωp/ω) must remain smaller
than unity to provide that the plasma density remains
subcritical for laser pulses (n > 0). Also the maximum
possible wavelength is limited by the size of the system,
which must exceed the information pulse length. Thus,

λ < 2π
(ωp

ω

) Lplasma

NinNref
, and

ND <
π2

√
2

(
1

NinNref

) (
Lplasma

re

)
, (48)

where we assumed (ωp/ω)2max = 1/2, and Lplasma is the
length of the plasma layer to store the hologram in. From
Eq. (48) it is seen that ND is limited by the length of
the plasma layer, which is hard to maintain uniform (as
required in the proposed model) on large distances.

In experiments, for storing information with fidelity,
it is also necessary to make sure that the level of ther-
mal fluctuations does not exceed the amplitude of the
plasma wave itself. Assuming immobile ions, one has
for the spectral density of electron density fluctuations
〈n2

e〉k ≈ ne/2N2
f (in case when ions are thermalized, one

needs to take Nf = 1 in this formula) [19]. Integrate
〈n2

e〉k over k in the range ∆kz ∼ σ−1 (fluctuations with
wavenumbers larger than σ−1 are averaged out while re-
trieving), ∆k⊥ ∼ λ−1

D (fluctuations with ∆k⊥ > λ−1
D

decay fast due to Landau damping) to get

δñe ∼ N−1
f

√
ne/σλ2

D (49)

for the amplitude of density fluctuations resonant to the
hologram profile. Regular density oscillations δne ∼
kfEf/4πe in the field Ef ∼ (mec/e) f

√
ωωp/2 of the

plasma wave constituting the hologram [11] is given by

δne ∼ (λreσNin)−1 (50)

where we substitute the maximal possible dimensionless
amplitude of the electrostatic field f corresponding to
εf ∼ 1 (see Sec. IV). As shown in Sec. IV, for adequate
recording and retrieveing, it is necessary to have δñe �
δne together with other conditions (28), (33) satisfied.

In case if only the amplitude profile of the image is
of interest (e. g., while processing digital data), the con-
sidered restrictions on the experimental parameters for
DVH are sufficient. However, for retrieving holographic
images from nonuniform plasma preserving the phase
fronts, there exists a limitation on the level of quasistatic
plasma inhomogeneities. Because of the finite electron
density perturbations, δn̄e/ne, transverse to the laser
beam, after the information pulse passes the distance
equal to its own length, its phase front gets modulated
with characteristic phase shift

∆ϕ ∼ NinNref

2

(ωp

ω

) δn̄e

ne
, (51)

which must remain small compared to unit for preserving
the information about the phase. From this point, bet-
ter quality of the hologram requires both small plasma
density and small relative transverse variations of it.
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Parameter Exp. 1 Exp. 2

Wavelength λ, µm 10 400

Electron density, cm−3 5 × 1017 3 × 1014

Electron temperature, eV 200 150

Maximal possible time of pulse storing
(∆max/τin)

6.5 180

Pulse duration τin, ps 8.3 330

Pulse length Λ = cτin, cm 0.25 10

Information pulse maximal intensity,
W/cm2

4 × 1010 2.5 × 107

Reference pulses intensity, W/cm2 1 × 1012 6.3 × 108

Nf = (
√

2kfλD)−1 3.8 4.3

ND = neλ
3 5 × 108 2 × 1010

Parameter Exp. 3 Exp. 4

Wavelength λ, µm 10 800

Electron density, cm−3 2 × 1018 3 × 1014

Electron temperature, eV 700 550

Maximal possible time of pulse storing
(∆max/τin)

22.5 1200

Pulse duration τin, ps 4.2 330

Pulse length Λ = cτin, cm 0.13 10

Information pulse maximal intensity,
W/cm2

8 × 1010 1.3 × 107

Reference pulses intensity, W/cm2 2 × 1012 3.2 × 108

Nf = (
√

2kfλD)−1 4.0 4.5

ND = neλ
3 2 × 109 1.6 × 1011

TABLE I: Possible options for DVH experiment in a cold
plasma at Nin = σ/Λ = 5, Nref = ωpτref = 20π. Experiments
1 and 2 correspond to ωp/ω = 0.2, maximal possible wave-
length for Lplasma = 10 cm is λ = 400 µm (see Eq. (48)).
For ∆ϕ < 0.1 rad, one must have δn̄e/ne < 0.003 (see Eq.
(51)). Experiments 3 and 4 correspond to ωp/ω = 0.4, max-
imal possible wavelength for Lplasma = 10 cm is λ = 800µm.
For ∆ϕ < 0.1 rad, one must have δn̄e/ne < 0.0016. In all the
four cases, δñe � δne. The actual storing time can be several
times longer because after the time ∆max = ν−1 the ampli-
tude of the hologram decreases only by a factor of e ≈ 2.7.

As seen from Table I, in a realistic temperature and fre-
quency range, millimeter-size laser pulses can be stored
in plasmas without significant distortion of their profiles
on time scales long compared to the duration of the infor-
mation pulses. For example, the information in a 8.3 ps
long pulse of 10 µm radiation can be stored in a plasma
with density 5 × 1017cm−3 and length just 2.5 mm. If
the plasma is about 200 eV, then the information can

be stored at least about 6 pulse durations, or for about
55 ps. Note that in fact the actual storing time can be
several times longer because after the time ∆max = ν−1

the amplitude of the hologram decreases only by a fac-
tor of e ≈ 2.7. Unfortunately, in plasmas, restoring the
phase front of the information pulses without distortion
requires probably too homogeneous plasma comparing to
what can be obtained in relatively simple experiments.
For example, even for Nin = 1, Nref = 6π, ωp/ω = 0.2,
one needs to have δn̄e/ne < 5% to provide that ∆ϕ < 0.1
rad.

It is worth mentioning that in addition to plasmas,
there may be found other Raman media with low-
frequency waves of a different nature, which would have
even lower damping rates and allow storing holographic
optical information for significantly longer time.

VIII. SUMMARY

We generalize the conventional holography by combin-
ing the advantages of dynamic and volume holography
into a single technique, which we designate by the term
‘dynamic volume holography’, or DVH. DVH allows cap-
turing the information carried by a 3D laser pulse in the
form of a slowly-propagating low-frequency wave that
persists for a time large compared with the pulse du-
ration. If the low-frequency wave envelope (a dynamic
volume hologram) is then probed with a short laser pulse,
the stored information is retrieved in a second scattered
electromagnetic wave. Both imprinting and scanning the
hologram can conserve the optical information with fi-
delity. The effects of recording, storing and retrieving
the light pulses can take place in arbitrary Raman me-
dia, such as plasmas, gases, fibers etc, when dissipation
of the low-frequency wave (an information container) is
negligible on time of storing the trapped signal. Possibly,
the proposed technique could be useful for holography on
the base of solid-state media at low temperatures where
the dissipation of a dynamic hologram could be limited
by quantum effects.

In addition to possible applications of dynamic volume
holograms for designing 3D memory units, which might
be especially useful for storing analogue information, the
proposed technique is also applicable for processing opti-
cal information. While storing or reading the pulse struc-
ture, the optical information can be processed as an ana-
logue or a digital signal, which allows simultaneous com-
puting of three-dimensional continuous or discrete arrays
of data.

This work was supported by the US DOE, under con-
tract DE-AC02-76 CHO3073, and Russian Foundation
for Basic Research, grant 02-02-06258.
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